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11.1 INTRODUCTION

Current pesticide risk assessment for honey bees is based on laboratory tests and on semi-field and field
studies. Risk assessment schemes focus on quotients of the hazard imposed by a compound and the predicted
exposure to this compound in the field. Depending on this quotient, in a tiered approach, individual larvae and
adults or entire experimental colonies are tested under confined or open field conditions. This scheme provides
a wealth of important information for risk assessment. Test methods, experimental designs, standardization,
and new and comprehensive endpoints are under contimaous development and will help improve the efficiency
and reliability of current risk assessment schemes. There are, however, a number of questions relevant for
ecological risk assessment that cannot be fully answered with laboratory and field studies. Ecological risk
assessment tries to determine unacceptable risk on populations but it remains unclear how to ¢stablish whether
an effect is unacceptable or not (Hommen et al, 2010). Tests focusing on the individual organisms deliver
information on mortality or sublethal effects under laboratory conditions, but leave uncertain what these
effects mean at the population level, for cxample, whether or not they impair the ability of the entire colony to
persist, to cope with other stressors, and to reliably provide services such as honey production and pollination.

To assess effects on natural populations in general. ecological factors such as adaptive behavior, population
structure, density dependence, exposire patterns, landscape structure, and species interactions need to be taken
into account (Forbes et al., 2009). In addition, for social insects such as honey bees, it needs to be considered
that the reproductive unit is not the dndividual worker bee but the entire colony and its queen. The colony
and its functioning can be congidered as a complex net of buffer mechanisms that has evolved to increase the
fitness of the gueen. The loss of individual worker honey bees might thus be less significant than in solitary
species: beckeepers may see it differently if honey harvest is impaired. On the other hand, buffer mechanisms
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have only certain capacities. We cannot casily know these capacitics and how they are affected by other
stressors such as varroa mites (Varroa destructor), viruses, changes in landscape, or beckeeping practices.

Serni-ficld and field studies allow inclusion and manipulation of some ecological factors, but certainly not
all of them in all possible combinations within experimentally controlled conditions. They are expensive,
time-consuming, require interpretation by experts, and may still be inconclusive as sufficiently controlled
conditions are rarely achievable under field conditions. In addition, behavioral responses of colonies and
foraging bees show large variations that can make it difficult to obtain any identifiable effects of a certain
factor on honey bee populations.

Ecological models provide a tool to overcome limitations of empirical studies. They are widely used in
theoretical and applied ecology because ecological systems are usually too complex, develop too slowly, and
cover arcas that are too large to be studied solely via controtled laboratory or field experiments. In the context
of regulatory risk assessment, ecological models are often grouped with organisni-level models addressing
toxicokinetics and toxicodynamics (TK-TD) or dynamic energy budgets (DEB) to “mechanistic effect mod-
els” (Grimm ¢t al., 2009). This terminology was introduced to distinguish these models, which simulate
processes related to effects of pesticides on organisms and populations, from fate miodels which focus on the
fate of pesticides in water and soil. and from statistical or empirical models. which establish correlative, but
not causal relationships between factors. Ecological models can address al fevels of organization beyond the
individual, but ecological risk assessment usually focuses on populations (Galic et al., 2010: Schmolke et al.,
2010a). In this chapter, we give a brief introduction into the rationale and approaches of ccological modeling
of population dynamics. We present an example model to demonstrate the potential insights that can be gained
from such ¢cological models, summarize current modeling practice, and describe recent atternpts to establish
good modeling practice (GMop), which is needed to make mechanistic effect models applicable for regulatory
risk assessment, We then provide an overview of existing models of honey bee colonies and give recommen-
dations for the potential use of these models for pesticide risk assessment. Although this chapter focuses on
honey bees, we will also briefly discuss how ecological modeling could support risk assessment of non-Apis
pollinators. We will not discuss models addressing ecosystem services, which are important but belong to a
different category of models and address different questions (Kevan et al,, 1997; Williams et al., 2010},

11.2 EXAMPLE MODEL: COMMON SHREW

The following example mode! demonstrates how well-tested population models can be used to extrapolate
the effects of toxicants observed at the individual level to the population level while considering different
exposure patterns and landscape structures.. Bince such a demonstration does not yet exist for honey bees
or other pollinators, we use a model of the common shrew (Sorex aranens L), Wang and Grimm (2007}
developed an individual-based population model of this species, which is a common insectivore. The purpose
of the model was to explore the population-level conseguences of acute mortality induced by pesticides.

The key behavior of the common shiew, which determines its response to heterogeneity in habitat quality
and to the local density of conspecifics, i8 territoriality, that is, the aggressive defense of a certain area to
secure respurces and habitat. Therefore, the model 1s spatially explicit and represents each individual of
the population, its life cycle, and its territorial behavior. The habitat consists of hexagonal units of 5 m
diameter which are characterized by habitat type (e.g., grassland or hedge) and level of food resources on a
given calendar day. Individuals are characterized by the variables age, gender, developmental stage (lactating
offspring, subadult, adult), fertility (fertile, infertile; applies to females only), pregnancy, and home range.
Home ranges are a st of habitat units occupied by a certain individual,

The processes of the model comprise development, mortality, reproduction, home range dynamics, dis-
persal, and mating. The model proceeds in daily time steps and covers an area of 25 ha. A full description
of the model is given in Wang and Grimm (2007) using the standard format for describing individual-based
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FIGURE 11.1  Output of an individual-based mode! of the common.shrew {Wang and Grimum, 2007) on a certain day
of the simulation. Black lines delineate home ranges of males, gray lines of females. Home ranges in cereal fields need
to be larger than in grassland or hedges because of lower resowree levels. Home ranges are drawn as minimum convex
polygons by connecting the outroost cells occupied by their owners (from Wang and Grinun, 2007).

meodels IBMs), ODD (Overview, Design concepts, Details; Grimm et al., 2006: 2010). The model aliows the
fate of each individual and its territory to be followed, day by day. in heterogencous landscapes consisting of
different habitat types (Figure 11.1).

Parameters affecting home range sizes were calibrated to match observations of a certain field study.
Likewise, daily mortality was calibrated to obtain populations able to persist in good habitats. All other
model parameters were taken from field studies. To make sure that the model captures important features
of the internal organization of real populations of the common shrew, it was compared to rmuitiple patterns
observed in reality (Grimm et al,, 2005; Grivn and Railsback, 2005, 2012, Home range size and location
varied with season, habitat type, and shrew density qualitatively similar to what is known from the field. Further
patterns successfully tested were: proportion of pregnant and lactating formales and the age distribution of
juveniles and subadults, Thus, although the model certainly is not realistic in the sense that it takes into account
all aspects of real populations, it is realistic enough to gualitatively predict the response of populations to
additional mortality.

Accordingly, Wang and Grunm (2010) explored various hypothetical scenarios by applying pesticide-
induced mortality on cither April | or July 15: on that day, all individuals had an additional probabhility
of 10% or 20% of dying. They contrasted orchards with and without 10% or 20% hedges, and compared
different endpoints such as population size. daily population growth rate, recovery time, and extinction risk.
They found that population size is more sensitive for detecting short-term effects than population growth
rates; and that the landscape structure and timing of application had strong impacts on population recovery.
For example, with 20% additional mortality on April 1, the population stabilized in orchards including 20%
hedges, but continually declined in landscapes without hedges (Figure 11.2).
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FIGURE 11.2 Population dynamics in orchards with and without 20% hedges with a yearly application of 20%
additional mortality on April 1 (from Wang and Grimm, 2010).

The model of Wang and Grimm (2007, 2010) can in principle be used for regulatory higher-tier risk
assessmments of small marmmals. Its main Himitation is that only few empirical studies exist that can be used
for parameterizing, testing, and validating the model. But it clearly demonsirates the potential of well-tested
ecological models for risk assessment of pesticides. A further exemplary demonstration of this potential
can be found in Topping et al. (2009), who analyze, using much more detailed models. scenarios including
skylarks. beetles, spiders, and field voles. Galic et al. (2010 give an overview of the types of insights for
ecological risk assessment that can be gained from population models. Population models are all based on a
model’s ability to assess population status after integrating lethal and sublethal effects including behavioral
changes, at the individual level.

11.3 RATIONALE AND APPROACHES OF MECHANISTIC EFFECT MODELING

Ecological models have to be based on conceptual models that reflect our current understanding of the system
represented in the model. Conceptual models are usually formulated verbally or graphically, which by itself
provide no means for testing whether they are cospsistent and complete. Modelers, therefore, use formal
notations, based on mathematics and computer logics, to translate conceptual models into a framework that
allows rigorous calculation of their conseguences. Ecological models are thus, broadly speaking, tools for
studying if-then scenarios: if we agree on a cerfain set of simplifying assumptions, #hen we have (o accept
the consequences predicted by the model

At the beginning of modeling projects, we are usually unhappy with their consequences because they do
not match observations, so we revise out assumptions. Model development is, therefore, an iterative process
(Figure 11.3).

The “Modeling Cycle” depicted in Figure 11.3 is relevant for any type of model, but many different types
of model design and formulation exist (Schmolke et al., 2010a). Simple models, which are formulated viaone
or a few coupled differential equations, keep track of the processes causing changes in population size, such
as mortality, reproduction, or disturbances. They are easy to communicate and understand but usually too
poor in structure and mechanisiis to be predictive and testable. Matrix models go bevond population size and
consider the age, size, or stage structure of populations, They are frequently used to predict population growth
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FIGURE 11.3  Tasks of the “Modeling Cycle,” that is, of the iterative process of formulating, implementing, testing,
and analyzing ecological models (after Schmolke et al., 2010b). Fulleycles usually include a large number of subeycles,
for example. verification leading to further effort for parameterization op reformulation of the model. The elements of this
cycle are used {o structure a new standard format for documenting maodel] development, testing, analysis, and application
for environmental decision making, TRACE (Schmolke et al., 2010b). (For a color version. see the color plate section.)

rate and the sensitivity of growth rate to changes in mortality.or reproduction of certain classes of individuals.
Again, matrix models are easy to communicate but, once they are designed to inchude stochasticity, spatial
effects, or density dependence, they have to be run.on computers and are, therefore, no longer very different
from IBMs. Simple matrix models have a standard format and are relatively easy to parameterize and
analyze. They project current average conditions dgto the future and can, therefore, be used for initial
screening, corresponding to lower tier tests invisk assessment, with small or negative population growth rate
indicating risk.

IBMs are computer sirmudation models in which cach individual and its life cycle is represented explicidy
{(see the common shrew model presented above). Population dynamics and growth rates emerge from what
individuals do and how they interact with cach other and their environment, IBMs are harder to communicate,
parameterize, test, and understand than simpler mathematical models, but nevertheless used when one or more
of the following factors are assumed to be essential for explaining population dynamics: local interactions,
differences among individuals, and adaptive behavior (Grimm and Railsback, 2003). IBMs are no longer new
but routinely used not only in egology but also in many other disciplines ranging from behavioral ecology to
social sciences, where they are usually referred to as “agent-based” models (Ratisback and Grimm, 2012).
Strategies exist to optimize model complexity (Grimm et al., 2003} and to formulate and communicate IBMs
according to a standard format, the ODD (“Overview, Design concepts, Details”) protocol (Grimm et al,,
2006, 2010).

To use models for pesticide risk assessment, two conflicting criteria for assessing the suitability of models
are ¢ritical: on the one hand, models need to be complex enough to deliver testable predictions which enable
decisions about whether or not the model is a sufficiently good representation of the real world. On the other
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hand, models need to be simple enough to be thoroughly analvzed and fully understood. Modeling thus
requires finding the optimal level of model complexity (Grimm et al., 2003, Grimm and Railsback, 2012).

Understanding the main process within a model is decisive, otherwise we would be asking for blind faith
in output from the equivalent of a black box. For some questions, simpler models can be sufficient, correctly
predicting trends and general mechanisms without making quantitative predictions. For other questions,
more accurate predictions are required, which is possible if the models are driven by first prnciples, such
as physiology, stoichiometry, or adaptive behavios, and if] gh data are available todirectly or indirectly
estimate model parameters with sufficient certainty. High},y_g‘ogicai predictive models have been developed
(e.g., Railsback and Harvey, 2002; Topping et al., 2009; Stillman and Goss-Custard, 20103, but all required
mare than 5 person years before first versions could be used to support decisionmaking. However, once a
predictive model exists, it pays off extremely well because it can then be used as a virtual faboratory to answer
a wide range of questions regarding population dynamics under different and possibly new environmental
conditions.

11.4 MODELING PRACTICE FOR RISK ASSESSMENT

Claims about the high potential of ecological modeling for pesticide risk assessment are not new and have
been made for at least 20 years (Barnthouse, 1992). In fact, approximately 100 academic publications exist
that use population or other ecological models to explore the effects of pesticides at the population level
(Schmolke et al., 2010a). Galic et al. (2010) summarize the scigntific insights of these studies, which are
certainly important and contribute to our understanding of the significance of individual-level effects at the
population level. Nevertheless, the use of models is still limited to'a few recent exceptions. Why is this
507 Schmolke et al. (2010a) found that most models in this ficld are not fit for being used for pesticide
registrations, The main reason is that criteria for being accepted as a scientific publication, such as novelty,
focusing on one main aspect, simplicity, or generality. are less relevant for making a model suitable for basing
environmental decisions on their output. In most cases, choice of moedel structure and complexity was not
justified, endpoints directly relevant for regulatory risk assessments were not considered, sources of parameter
vakues were unclear, uncertainty of model output was pot communicated, and most importantly. little effort
was made to demonstrate that the model was a sufficiently good representation of the real population such
that insights gained in the model world could be wansferred to the real world with sufficient confidence.

This sitnation is, however, changing in Europe. Two main challenges to make models fit to be used for
regulatory risk assessment are (1) the establishment of GMoP, so that both industry and regulators have
clear criteria for how to create and assess models. and (2) the lack of researchers who are well-trained both
in ¢cological modeling and risk assessment (Thorbek ¢t al., 20100, Therefore, CREAM (Chemical Risk
Effects Assessment Models), a large research and training network funded by the European Commission,
was launched in 2009 (Grimam et al., 2009; http//crcam-itn.eu), i des 13 academic in ions and 10
partners from industry, consulting firms, and regulatory authoritie&@ mn until 2013, and deliver both
guideli or GMoP and more than 20 young rescarchers trained in modeling and risk assessment. Moreover,
models he developed which, for indicator species and risk assessment questions, are good demonstrations
for how models can be used for regulatory risk assessments.

Elements of GMoP have long been-identified but are stilf widely ignored. The real challenge is to got
these clements accepted and used in practice. Schmolke et al. (2010b) found that for this, regulators or, more
generally, decision makers need to'be involved. direct benefits for modelers who follow GMoP (which usually
requires ¢xtra effort) need to beadentified, and a consistent terminology needs to be established. Therefore,
the basic approach of CREAM in establishing GMoP is to define and use a standardized documentation
framework, Transparent and Conmiprebensive Ecological Modeling (TRACE). Schmolke et al. (2010b) suggest
the use of the structure of the iterative modeling cycle (Figure 11.3) as the basis for a general and standardized
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document structure. As a result, all models that are to be used to support pesticide registration and come
with a TRACE documentation as a supplementary document, can be assessed in exactly the same way.
Regulators will know that, for example, sensitivity analysis will be described in Section 2.2, the conceptual
meodel underlying the model’s design can be found in Section 1.2, Modelers, on the other hand, will know
that regulators will expect to see. for example, a documentation of sensitivity analysis, at some point, so they
can use the TRACE format as a checklist. The direct benefit for the modeler is that the TRACE format helps
keeping notes in the “modeling notebook,” which corresponds to “lab journals” in laboratories, in a format
that later can directly be transferred to TRACE documents.

Once a critical number of example TRACE documents exist, by the end of the CREAM project, more
specific assessment guidelines can be developed that help standardize the use of ecelpgical models for reg-
alatory risk assessment. This includes the agreement on standard scenarios, species, tandscapes, ecoregions,
and population-level endpoints. Honey bees and pollinators will play an important role in this context, due to
their unique significance for biodiversity and ecosystem services.

11.5 EXISTING MODELS OF POLLINATORS

Quite a foew models exist that address various aspects of honey bee behavior and ecology (for an overview, see
Section 5.4, in Schmickl and Crailsheim, 2007). However, there are swprisingly few sufficiently described
models addressing dynamics of non-swarming, managed colonies which include the full life cycle of worker
bees from a single hive over several years such that the colony-level effects can be assessed (Table 11.1),
Two of these models are interesting from an academic poiat of view, but too simple to be tested against
observed data (Omholt, 1986; Khoury et al., 2011). Nevertheless, theoretical insights can guide the design and

TABLE 11.1

Q#} Models That Include the Full Life Cycle of Worker Bees and Run Long Enough, that is, Two
or More Years, to Assess Status and Survival of 3 Model Colony. The Third Column Lists Additional
Factors Included in the Model That Can Affect Colony Status and Survival

Reference Purpose of Model/Question Addressed Additional Factors

COmiholt (1986) Explain brood-rearing peaks in non-swarnming
colonies

DreGrandi-Hoffman et al. (1989} Simiulate honey bee population dynamics to
SUppOLt flanagement

Martin (2001) Explain the link between varroa mite infestation Varroa and virus
and honey bee colony failure, incloding the infections
effeets of virus diseases

Al Ghamdi and Hoopingarner (2004) Develop a tool for research and management; Varroa
interaction between varroa and honey bees

Thompson et al. (2005), (2007} Hxplore effect of an insecticide on colony Pesticides
dynamics

Schmickl and Crailsheim {2007) Explore significance of important feedback loops, Swarming

potlen supply, and brood cannibalism

Becher et al. 2010) Does temperature during development affect
colony survival?

Khoury et al. (2011) Impact of increased forager mortality on colony
growth and development
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analysis of more complex models. For example, Khoury et al. (2011) implement two feedback mechanisms:
between colony size and brood production and between the number of foragers and recruitment to foraging,
which have been referred to as “social inhibition” {Leoncini et al., 2004). They found that if forager mortality
exceeds a certain threshold, the colony can no longer maintain itself and will decline to extinction. These
feedback mechanisms have been observed empirically and the results of Khoury et al. (2011) suggest that
their significance should be further tested in more detailed models, containing a colony’s age structure, nectar
and pollen stores, further feedback mechanisms, and variable environmental drivers.
The model by Thompson et al. (2005, 2007} is also simple and considers the abundance of brood, in-hive
Au Please and forager bees. This model was originally used in combination with a more detailed population model of

pr"“‘;‘; varroa mites (Wilkinson and Smith, 2002), but Thompson et al. Ieft out the varroa part and added assumptions
Comnpieie e N . ~ ¢ . . N i
demﬁs or the  About the effects of a certain type of pesticide (insect growth regulators), based on observations from their
reference own experiments. Such reuse of models for new questions can be problematic, since the model’s design may
citation

s not be appropriate for the new questions. In this case, model resolution is likely to be too coarse to make
Thempson et e e i i . e . W g,

al., 2007 to e TODUSE predictions, stll, the model serves as a demonstration of how, in priociple, individual-lovel effects of

included in the pesticides can be included in colony models of honey bees.

reference list The models presented by Martin (2001) and Al Ghamdi and Hoopingarner (2004) are modifications
of BEEPOP (DeGrandi-Hoffman et al.,, 1989), a simulation model proceeding in time steps of one day
and representing coborts (or age classes) of eggs, brood, and adults of both worker bees and drones (Fig-
ure 11.4). BEEPOP distinguishes between in-hive and foraging bees, whereas the other two models do not.
Colony dynamics are driven by the queen’s egg-laying rate, which is mainly driven by weather, in particular
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FIGURE 11.4 Concepaal diagram of the colony model of Martin (2001). Solid lines represent the flow of individuals
between developmental stages and dotted lines represent influences (from Martin, 2001 ).
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temperature and photoperiod. Additionally, these models include feedbacks between egg laying and colony
size. Drones are mainly included because mites are more attracted by drone cells and mite reproduction is
higher in drone cells, so that the proportion of drose cells has an important impact on the dynamics and
effects of varroa infestation.

BEEPOP has been augmented by detailed modules for including effects of pesticides. (Bromenshenk
¢t al., 1991). The module BEETOX included a toxicity database for more than 400 chemicals and calculated
lethal and sublethal effects for specific exposures; the module BEEKILL allowed the linkage these effects o
exposure scenarios and feed the resulting changes in mortality, development, and longevity into the colony
model. Unfortunately, details of these modules were not published and the software implementing them, PC
BEEPOP, is unlikely to run on modern computers. It also seems that it has never been used for regulatory
rigk assessment of pesticides, probably becanse it was very much ahead of its time. Nevertheless, the design
of PC BEEPOP is interesting since it allows one to test effects of pesticides on honey bee colonies in a
standardized way.

Becher et al. (2010} include the effect of colony size and structure on heating amd the resulting temperature
in the brood chamber, It had been observed that brood developed under higher temperatures proceeds faster
from in-hive tasks to foraging. It turns out, however, that this has little cffect on the dynamics and status of
the colony. This is a good example of the role of models for relating individual-level effects to colony-level
phenomena. Without the model, it would have been impossible to predict this relationship for the temperature
effect, simply because colony structure, environmental drivers, and feedback mechanisms are too complex
to be even qualitatively assessed just by reasoning. Negative tesults, s in this case, that is, the working
hypothesis is shown to be false, are no less inportant than positive results.

The most complex colony model is HoPoMo (Schmickl and Crailsheim, 2007). In contrast to all other
colony models, HoPoMo is not entitely driven by demographic rates, such as egg-laving rate of the queen
and age- and task-dependent mortalities. Rather, the current nwmber, stage, age, and task of bees are used
to calculate the estimated requirements of the colony for nectar and pollen. Depending on current stocks of
these two resources, the proportion of worker bees devored to different tasks is dynamically reallocated every
day. The three different tasks distinguished are nursing, food processing, and foraging. HoPoMo includes a
large number of further feedbacks between the current state of the colony, or parts of it. and process rates.

HoPoMo consists of 60 difference equations, which are all well documented and biologically justified.
The model has been thoroughly tested, including sensitivity analyses and exploration of certain mechanisms.
1t reproduces several empirical patterns and correctly predicts at least one feature of real colonies that was
not used to calibrate or design the model, but emerged during analysis of the full model: in smaller model
colonies, with no more than 20,000 brood cells, the number of unsealed brood cells shows oscillations similar
to what has been observed in real experimental hives. The model has, however, not vet been used to answer
any specific question about how colonies respond to environmental stress, such as exposure o a pesticide.

Two of the colony models in Table 1 1.1 abso consider infestation with varroa mites. Phoretic mites, that is,
mites attached to worker bees, enter brood cells about one day before they are sealed and reproduce within
these brood cells. Emerging mites try to infest another brood cell or become phoretic, and thereby spread
varroa infestation. During the interaction with brood and worker bees, mites transfer viruses, for exampie,
deformed wing virns (DWV), or.acute paralysis virus (APV). The model of Martin (2001} integrates honey
bee and mite population dynamics and the effects of viruses. It shows, for example, that the less virulent
DWYV will become more widely spread than APV, and that mite control measures need to be taken before
the longer-lived overwintering bees eémerge. Further varroa models, which focus on various aspects of varroa
population dynamics, but are coupled to much simpler colony models than BEEPOP, include Ombelt and
Crailsheim (1991), Fries et al. (1994), Martin (1998), Calis et al. (1999), Wilkinson and Smith (2002), and
DeGrandi-Hoffman and Curry (2005). For the purpose of pesticide registration, it scems necessary to use
meodels that allow inclusion of varroa infestation because at least in Europe and North America, varroa s a
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ubiquitous stressor, It remains as an open guestion, the way in which varroa infestation could or should be
taken into account for pesticide registration. Should decisions be made to ensure safety under.a worst-case
assumption of high infestation where colonies have high risk of collapsing even without exposure, under
an assumption of effective varroa management by beekeepers, or should average infestation levels based
on national or international surveys be used? These questions cannot be answered scientifically, but robust,
well-tested, and predictive colony models which allow inclusion of varroa and possibly other stressors would
support decisions by quantitative arguments.

Currently. only the model by Martin (2001) is suitable to consider different, but simultaneous stressors.
On the other hand, HoPoMo is a more realistic model and includes feedback mechanisms which seem to be
important for the functioning of a colony; in particular, HoPoMo is driven by pollenand nectar stores, demand,
and availability in the landscape. If HoPoMo could include a module representing varroa infestation and virus
effects, it would currently be the most suitable model for pesticide risk assessment. However, changes in
landscape structure, crop plants and their rotation, and agricultural practice also affect honey bee colony
performance so that, for registration purposes, a model should also allow such factors to be represented with
sufficient detail regarding spatial structure, crop dynamics and rotation, and foraging behavior. Adding such
a module to HoPoMo would make an already very complex model even more complex and, therefore, harder
to test and understand. Therefore, a colony model that includes varroa, viruses; and foraging in heterogeneous
fandscapes should preferably be similar in design to the model of Martin (2001 ) but include the most important
feedbacks included in HoPoMo.

Awell-tested prototype of such a model. dubbed “BEEHAVE,” was developed by M. Becher and coworkers
at Rothamsted Research, UK, in 20092013, Its purpose is not pesticide registration per se, but to explore
the possible reasons for honey bee decline and collapse as well as devising strategies for improving honey
bee health, For this purpose, the model includes varroa, viruses. and explicit foraging in heterogeneous
Iandscapes. The option to include pesticide effects, or other additional stressors subsequently shown to be
important, was considered from the beginning of this modeling project and a design loped to enablce this
to be ively straightforward. The model and its computer code and user manualt 127 be made available in
the stmmrier of 20113, so that other researchers can test the model independently and use it or the model for
various purposes.

As for non-Apis pollinators, fewer models exist than for honey bees. The population model of the solitary
red mason bee, Osmiia rufa (L.) (Ulbrich and Seidelmann. 2000) shows, however, that if sufficient empirical
knowledge of a species ecology and behavior exists, developing a population model is straightforward and
can lead to important insights, The purpose of the Osmia model was predicting the risk of extinction of this
solitary species in different types of habitat, which are characterized by the amount and guality of food they
provide. The model is individoal-based and focuses on ccll construction and maternal investment in brood
cells. The life stages distinguished are eggs. larvae, imagines in cocoons, males, pre-nesting females, and
nesting females. A key decision of nesting females is the sex determination of their brood. The first brood
cells are always daughter celis, but at some point, the mother bee switches to construction of son cells. In
the model, it is assumed that this switching depends on the mother’s weight, that is, heavier bees produce
more danghter cells. Likewise, size of progeny is related to their mother’s weight. As a measure of habitat
quality, time for cell construction was tsed as a proxy (Gathmann, 1998). In this way, the model can be
finked to habitat quality without explicitly representing habitat and foraging. As stressor, parasites were taken
into account, with parasitism rates being higher for longer cell construction times. Mean population size and
extinction risk were taken as'population-level endpoints.

Mitesser et al. {2006} developed a colony model for the halictid bee Lasioglossum malachurum to explore
the emergence of activity cycles, which are typical for some anmual eusocial “sweat bees” (Halictidae). The
model is very simple and'includes only two state variables, the sumbers of workers and of sexuals: the time
horizon considered is 30 short'that mortality of sexuals could be ignored. Still, there is no principle reason
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why it should not be possible to develop an age-structured model, similar to BEEPOP or BEEHAVE that
includes the full life cycle.

A very interesting IBM of bumble bees was developed by Hogeweg and Hesper (1983). It includgs the full
life cycle of individuals and different types of behaviors, and is, like HoPoMo, to a large degree driven by food
collection and consumption and time budgets for certain activities. Focus, though, is less oneplony dynamics
per se but on explaining division of labor within the colony and the so-called “dominance interactions,” by
which this division emerges. This model was about 20 years ahead of its time as IBMs: which go beyond
demographic rates and include behavior, have only become more widely used within the last 10 years. |t
would certainly be worthwhile to reimplement this model and try to adapt it to new guestions. Whether or not
it would be sufficient to just assume division of labor, or have mechanisms included that allow this division
to emerge, remains an open guestion,

In general, eusocial non-Apis pollinators have simpler and smaller colonies. This implies that, although
they benefit from cooperative activities, they do not maintain buffer mechanisms and reserves which would
be as powerful as in honey bee colonies. They also show greater foraging agtivity, to compensate for the Jack
of maintained reserves, potentially increasing the risk of pesticide exposuze.

A bottleneck for developing models for non-Apis pollinators might be the Jack of data about their foraging
behavior in real landscapes since exposure to pesticides to a large ¢xtent depends on foraging. Detailed
foraging models need to be developed and parameter] and tested using corresponding field studies and
experiments (Everaars, 2012; Everaars and Dormarnm, L2530

11.6 DISCUSSION

Sophisticated tests and schemes exist to assess the risk that pesticides impose to honey bees. Current regu-
lations and thresholds scem to be conservative but stilf leave many questions open. The difficulty is that o
confirm whether or not the sublethal or lethal effects of pesticides. observed in laboratories or field exper-
iments, translate into a significant risk to the functiomng and/or survival of a colony, controlled, fong-term
experiments are required to fake into account the individual and combined effects of pesticides and other
stressors on colonies at the landscape scale. For example, if on a normal day an average of 100 dead bees is
found around the hive, and during acute pesticide exposure 300 dead bees are found, is this of any significance
to the colony? Likewise, if larvae develop more slowly, or worker bees have a shortened lifespan due to pesti-
cides, how docs this affect colony functioning in terms of hongy production and pollination? Answering such
questions with real experiments might be possible to some degree, but would require enormous resources.

Ecological models could, in principle. compensate for this limitation of empirical approaches. And there
are, mdeed, ficlds where models are used to support environmental decision making. For example, recent
regulations of wildlife diseases, such as rabies or classical swine fever, are based on predictions of models
which are quite similar to the commeon shrew model presented carlier (Thulke and Grimm, 2010). In some
federal states of Germany, forest managementplans on the timescale of 10-20 years are based on predictions
of the individual-based forest model SILVA (Pretzsch et al, 2002). Commeon features of these and other
ecological models used for decisionmaking is that their development took at least § years. and their acceptance
by the responsible decision makers abgut 10 years.

Establishing the use of ecological models 1o assess risk of pollinators, in particular honey bees, can
nevertheless be achieved faster Well-tested and documented models already exist, which can at least be used,
preferably in joint workshops, to discuss and learn the use of such models for higher-tier risk asscssments.
BEEHAVE, the model cusrently developed in the UK, holds further promise, in particular because it includes
the main potential stressors of colonies and foraging in heterogeneous landscapes. Ideally, to make BEEHAVE
fit for use with pesticide registrations, it would need to be used in one or more workshops where researchers
from all three sectors involved in pesticide risk assessment, industry, regulators, and academia, agree on
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standard model scenarios, endpoints, and risk assessment schemes. BEEHAVE is described in a standard
format (Grimm et al., 2006, 2010), its development and analysis will be available as a TRACE document,
and it is implemented in a software platform, NetLogo (Wilensky, 1999), that is freely available and easy to
learn, BEEHAVE is thus designed to be tested, used, and developed not only by its develepers but by the
scientific and user comrmunity involved in honey bee research and management.

The good news is that heney bee models are less limited by data for parameterization than models of most
other species. Experimentatly managed colonies are relatively easy to observe in thedaboratory and field.
Bee behavior has been investigated a lot, and beekeepers accumulated sound empirical knowledge on how
colonies respond to environmental events and beekeeping practices. Foraging still is a bottleneck in empirical
knowledge, but remote sensing technigues can be used now to follow the flight path of individual foragers
(Riley et al., 1996; Osborme et al., 1999). Morcover, in response to the decling or collapse of honey bees
in Europe and North America, large international networks such as COLOSS (Neumann and Carreck 2010}
compile and analyze huge amounts of data, which can be used to test model predictions.

Ecological models are no sifver bullet to solve all problems of pollinator risk assessment, but they are a
vatuable and needed tool for extrapolating individual-level effects to the colony-levél, to overcome important
timitations of field studies, and to explore endpoints that quantify adverse effects not only on pollinators per
se but also on biodiversity and ecosystem services.
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